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Dear Editor,

Epigenetic modifications play pivotal roles in controlling the
function of eukaryotic genome. Itis suggested that one of the ma-
jor functions of epigenetic modification is to regulate transcrip-
tional activity. However, evaluating the direct impact of an
epigenetic modification on individual genes can be challenging,
as the traditional analysis with mutants of epigenetic modifiers
(epi-modifier) such as “writers” and “erasers” may reflect wide-
spread and indirect changes, making it difficult to establish cau-
sality between altered epigenetic modifications and gene
expression. In addition, some epi-modifiers may have additional
functions independent of their enzymatic activities (Morgan and
Shilatifard 2023).

The timing of the floral transition, or flowering, is crucial for
plant reproductive success and crop yield. Many plants align their
flowering time with changes in day length, or photoperiod, which
is measured by leaves. The inductive photoperiodic condition trig-
gers the production of FLOWERING LOCUS T (FT) in leaves, and it
is then transported into the shoot apex to induce flowering
(Corbesier et al. 2007; Turck et al. 2008; Adrian et al. 2010). In
the long day (LD) plant Arabidopsis, the LD condition promotes
FT transcription, especially at the end of LD, while FT is expressed
at very low levels under short day (SD) conditions (Kobayashi et al.
1999). The FT locus is marked by the repressive H3K27 trimethyla-
tion (H3K27me3) (Jiang et al. 2008), a histone modification that is
considered to be critical in programming development and envi-
ronmental responses. Although several studies have suggested
the importance of H3K27me3 in FT regulation (Jiang et al. 2008;
Wang et al. 2014), whether it directly impacts on FT transcription
and its photoperiodic control remains elusive.

Here, we focused on the FT locus and analyzed the significance
of H3K27me3 on its transcriptional regulation by directly and spe-
cifically reducing its accumulation levels at FT with a clustered
regularly interspaced short palindromic repeats (CRISPR)/cata-
lytically dead Cas9 (dCas9)-based targeting system. We adapted
the CRISPR/dCas9 SunTag system that was successfully used for
modifying DNA methylation in plants (Gallego-Bartolome et al.
2018; Papikian et al. 2019; Tang et al. 2022). This system includes

3 modules: guide RNA(s), dCas9 fused with SunTag (GCN4 peptide
repeats), and epi-modifier (effector) tagged with a single-chain
variable fragment (scFv) antibody and a superfolder GFP (sfGFP)
(Fig. 1A). scFv binds to GCN4, and therefore multiple copies of epi-
modifier (effector) are recruited to specific loci by CRISPR-dCas9
(Fig. 1B). Each module may vary depending on specific applica-
tions. For instance, guide RNA(s) and epi-modifiers would differ
for different genomic targets and epigenetic modifications that
are to be edited, respectively. In addition, different promoters
can be utilized to drive the expression of these modules in a spa-
tial-temporal manner. To facilitate the interchangeability of
these variable elements, we employed a GreenGate cloning sys-
tem and divided these 3 modules into 6 cassettes, which can be
rapidly and efficiently assembled in a single reaction (Fig. 1, C and
D and Supplementary materials and methods) (Lampropoulos
et al. 2013). Thereby, different applications only require the chang-
ing of a few building blocks. In this study, we have cloned several
cassettes that are readily available for use (Supplementary
Table S1).

In Arabidopsis, several H3K27 demethylases have been identi-
fled, and among them RELATIVE OF EARLY FLOWERING 6
(REF6)/JUMONJI 12 (JMJ12) is well characterized (Lu et al. 2011,
Cui et al. 2016). We first targeted the catalytic JMJ domain of
REF6 (REF6jmj) to the FT locus (Fig. 1E and Supplementary Fig.
S1A). The ubiquitous Arabidopsis UBIQUITIN 10 (UBQ10) promoter
was used to drive the expression of dCas9-SunTag and REF6jm)j.
Because H3K27me3 usually accumulates across the whole gene
body, a cluster of guide RNAs gl-g7 covering FT were used
(Fig. 1F and Supplementary Table S2). Removal of H3K27me3
from FT is expected to activate its transcription, leading to accel-
erated flowering. However, no obvious phenotypes were observed
(Supplementary Fig. S1B). It is possible that the REF6 JMJ domain
alone may not be sufficient to catalyze H3K27 demethylation in
vivo. Therefore, we targeted full-length REF6 to the FT locus
(Fig. 1E). However, this strategy also failed to accelerate flowering
(Supplementary Fig. S1C).

The REF6 C-terminal contains 4 Cys,His, zinc fingers (ZnFs),
which facilitate REF6 targeting to the genome via recognizing a
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Figure 1. Targeted editing of H3K27me3 at FT alters its expression pattern and the timing of flowering. A) Schematic representation of the 3 modules in
the CRISPR/dCas9 SunTag. NLS, nuclear localization signal; dCas9, catalytically dead Cas9; HA, hemagglutinin tag; SunTag, GCN4 peptide repeats;
scFV, single-chain variable fragment; sfGFP, superfolder GFP. B) Schematic depicting of dCas9-SunTag-epi-modifier on editing chromatin
modifications. C) Six cassettes in the GreenGate cloning system. D) The final assembly of the 3 modules that form dCas9-SunTag-epi-modifier in a
binary vector. E) Diagram of REF6, REF6jmj, and REF6AZnF used in this study. F) Schematic representation of the positions of guide RNAs gl-g7 at the FT
locus. Arrow indicates transcription start site, filled boxes indicate exons, and numbers indicate guide RNA targeted sites. G) The flowering phenotypes
of Coland FT_REF64ZnF #1 grown in LD. Scale bar, 2 cm. H) The flowering time of Col, FT_REF64ZnF #1, FT_REF6AZnF #2, and FT_REF64ZnF #3 grown in LD.
The total number of primary rosette and cauline leaves at flowering were counted; 12 plants were scored for each line. Values are means +sp.
Significance of differences was tested using 1-way ANOVA with Tukey’s test (P <0.05), with different letters indicating statistically significant
differences. I) Relative FT transcript levels in Col, FT_REF64ZnF #1, FT_REF64ZnF #2, and FT_REF64ZnF #3 at zeitgeber time (ZT) 4 under LD determined by
RT-gPCR. TUBULIN 2 (TUB2) was used as an endogenous control. Values are means + sp of 3 biological replicates. Significance of differences was tested
using 1-way ANOVA with Tukey’s test (P <0.05), with different letters indicating statistically significant differences. J) FT transcript levels in Col and
FT_REF64ZnF #1 over a 24-h LD cycle determined by RT-qPCR. TUB2 was used as an endogenous control. Values are means + sp of 3 biological replicates.
The FT transcript levelsin Col at ZTO are set as 1. Numbers indicate the average relative fold changes at each time point. White and dark bars below the x
axis mark light and dark periods, respectively. K) Primer localization used for ChIP-qPCR at the FT gene body. Arrow indicates transcription start site,
filled boxes indicate exons, and “FT-I”, “FT-II", and “FT-III” indicate regions examined by ChIP-qPCR. L) H3K27me3 levels at FT in Col, FT_REF64ZnF #1, and
FT_REF64ZnF #2 at ZT4 under LD determined by ChIP-qPCR. Values are means =+ sp of 3 biological replicates. Statistical significance was evaluated using
1-way ANOVA with Tukey’s test (P <0.05), with different letters indicating statistically significant differences. M) Genome browser view of H3K27me3
ChlIP-seq signals in Col and FT_REF64ZnF #1 encompassing the FT locus at ZT4.

CTCTGYTY motif (Cui et al. 2016; Pan et al. 2022). We suspected tethering REF6AZNF to the FT locus altered the FT expression
that the scFv-tagged full-length REF6 may preferentially binds to rhythm under LD, with its transcript levels increasing mainly dur-

in vivo REF6 targets through its ZnFs, preventing its association ing the noninductive period (Fig. 1]). Although dCas9 was success-
with the FT-localized dCas9-SunTag. Therefore, at last, we tar- fully targeted to the FT locus when coexpressed with guide RNAs
geted REF6 without its C2H2 ZnFs (REF6AZnF) (Fig. 1E). In this and REF6, REF6jmj, REF6AZnF, or dREF6AZnF, a reduction
case, several transgenic lines (FT_REF64ZnF) showed early flower- in H3K27me3 at FT was observed only upon expression of
ing phenotypes and increased FT transcript levels (Fig. 1G to I), REF6AZNF (Fig. 1K to M and Supplementary Fig. S2A to C), consis-
while targeting the enzymatic activity-mutated REF6AZnF tent with changes in flowering time and FT expression. In addition,

(dREF6AZnF) to FT or only expressing dCas9-SunTag and genome-wide H3K27me3 levels were comparable to those in wild
REF6AZnF without guide RNAs had no effect on flowering and FT type (WT) Columbia (Col) (Supplementary Fig. 52, D and E), includ-
expression (Supplementary Fig. S1, A and D to F). Interestingly, ing the guide RNA-untargeted regulatory regions upstream and
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Figure 2. H3K27me3 accumulates to repress FT transcription during the noninductive period. A) The flowering phenotypes of Col and FT_REF64ZnF #1
grown in SD. Scale bar, 2 cm. B) The flowering time of Col, FT_REF64ZnF #1, FT_REF6AZnF #2, and FT_REF64ZnF #3 grown in SD. The total number of
primary rosette and cauline leaves at flowering were counted; 11 plants were scored for each line. Values are means =+ sp. Significance of differences was
tested using 1-way ANOVA with Tukey’s test (P <0.05), with different letters indicating statistically significant differences. C) Relative FT transcript
levelsin Col, FT_REF64ZnF #1, FT_REF6AZnF #2, and FT_REF64ZnF #3 at ZT4 under SD determined by RT-qPCR. TUB2 was used as an endogenous control.
Values are means +sp of 3 biological replicates. Significance of differences was tested using 1-way ANOVA with Tukey’s test (P <0.05), with different
letters indicating statistically significant differences. D) FT transcript levels in indicated lines over a 24-h SD cycle determined by RT-qPCR. TUB2 was
used as an endogenous control. Values are means + so of 3 biological replicates. The FT transcript levels in Col at zeitgeber time (ZT) 0 are set as

1. Numbers indicate the average relative fold changes at each time point. Bars below the x axis indicate light and dark periods. E) H3K27me3 levels at FT
under LD and SD in WT Col determined by ChIP-qgPCR. AGAMOUS (AG), a H3K27me3-enriched locus, is used as a control. Values are means + sp of 3
biological replicates. Statistical significance was evaluated using 1-way ANOVA with Tukey’s test (P < 0.05), with different letters indicating statistically
significant differences. F) The flowering time of T3 lines grown in LD and SD. The total number of primary rosette and cauline leaves at flowering were
counted; 11 plants were scored for each line. Values are means +sp. T, T3 plants with the transgene; NT, T3 plants without the transgene. Statistical
significance was evaluated using 1-way ANOVA with Tukey’s test (P <0.05), with different letters indicating statistically significant differences. G)
Relative FT transcript levels in T3 lines at ZT4 under LD and SD. Rosette leaves of plants with or without the transgene were collected for RNA
extraction. TUB2 was used as an endogenous control. Values are means + sp of 3 biological replicates. Significance of differences was tested using 1-way
ANOVA with Tukey'’s test (P <0.05), with different letters indicating statistically significant differences. H) H3K27me3 levels at FT in T3 lines at ZT4
under LD and SD determined by ChIP-qPCR. Rosette leaves of plants with or without the transgene were collected for chromatin extraction. Values are
means + sp of 3 biological replicates. Statistical significance was evaluated using 1-way ANOVA with Tukey’s test (P <0.05), with different letters
indicating statistically significant differences.

downstream of FT (Supplementary Fig. S2, F and G) (Adrian et al. This may reflect the higher density of guide RNAs targeting this re-
2010; Cao et al. 2014; Zicola et al. 2019; Takagi et al. 2023), high- gion, leading to stronger recruitment of REF6AZnF (Fig. 1F and
lighting the specificity of REF6AZnF targeting. Notably, the reduc- Supplementary Fig. S2B), or alternatively, the strong accumula-
tion in H3K27me3 was more pronounced toward the 5" half of the tion of H3K27me3 at the 3’ half of the FT locus may somehow im-

FT locus, where H3K27me3 is moderately enriched (Fig. 1K to M). pede targeted H3K27me3 removal from this region.
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Although decreasing H3K27me3 abolished the FT expression
rhythm at LD, flowering was only mildly accelerated. We specu-
lated that by decreasing H3K27me3 at the FT locus, the induction
of its expression at the normally noninductive period may not
generate a strong impact on flowering at LD, which can induce
the FT expression at dusk in WT anyway (Fig. 1J). Thus, the flower-
ing time of H3K27me3-manipulated plants were further exam-
ined at SD. FT_REF64ZnF lines flowered much earlier than WT
under the SD conditions (Fig. 2, A and B). Compared with LD, SD
is noninductive to the FT transcription in Arabidopsis (Turck
et al. 2008). At SD, FT is constantly expressed at low levels, with
only a slight increase during daytime (Supplementary Fig. S3).
However, targeting REF6AZnF to decrease H3K27me3 strongly
promoted the FT transcript levels at SD (Fig. 2, C and D).

The above results obtained at LD and SD demonstrate that de-
creasing H3K27me3 at FT by targeting REF6AZnF predominantly
induces its transcription under the noninductive conditions.
Previous studies have shown that disrupting Polycomb repressive
complex 2 (PRC2) or PRC1 components, which reduces H3K27me3
levels at FT, strongly derepresses FT transcription at the nonin-
ductive times of LD, and the accumulation of H3K27me3 at FT os-
cillates, with higher levels at the noninductive period (Wang et al.
2014). We thus sought to investigate the temporal distribution
patterns of H3K27me3 at FT under both LD and SD using
ChIP-gPCR. As previously reported, H3K27me3 levels were re-
duced at dusk under LD (Fig. 2E) (Wang et al. 2014), coinciding
with the induction of FT transcription. However, H3K27me3 did
not show fluctuations under SD (Fig. 2E). These results suggest
that H3K27me3 primarily represses FT transcription under nonin-
ductive conditions.

FT expression is confined to phloem companion cells (Chen
et al. 2018). We further expressed REF6AZnF with the
SUCROSE TRANSPORTER2 (SUC2) promoter (Supplementary
Fig. S4A), which is specifically active in the phloem companion
cells (Stadler and Sauer 1996). This led to both early flowering
and increased FT transcription (Supplementary Fig. S4, B and
C), suggesting that reduction of H3K27me3 in companion
cells is sufficient to activate FT expression. Finally, we exam-
ined whether the early flowering phenotype observed in the
FT_REF64ZnF lines is heritable after the transgene is segregated
away. However, T3 plants without the transgene exhibited flow-
ering time, FT transcript levels, and H3K27me3 levels at FT com-
parable to those of WT (Fig. 2F to H). This suggests that FT
activation depends on the presence of a low H3K27me3 state
at the FT locus and that this epigenetic state is not stably
inherited across generations in the absence of the transgene.
Taken together, our findings provide direct evidence for the
causal importance of H3K27me3 in repressing FT transcription
and highlight the potential for fine-tuning gene expression
patterns and phenotypic traits in plants by editing epigenetic
modifications.
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