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Diatoms are ancestrally photosyntheticmicroalgae. However, some underwent
a major evolutionary transition, losing photosynthesis to become obligate
heterotrophs. The molecular and physiological basis for this transition is
unclear. Here, we isolate and characterize new strains of non-photosynthetic
diatoms from the coastal waters of Singapore. These diatoms occupy diverse
ecological niches and display glucose-mediated catabolite repression, a classi-
cal feature of bacterial and fungal heterotrophs. Live-cell imaging reveals
deposition of secreted extracellular polymeric substance (EPS). Diatoms
moving on pre-existing EPS trails (runners) move faster than those laying
new trails (blazers). This leads to cell-to-cell coupling where runners can
push blazers to make them move faster. Calibrated micropipettes measure
substantial single-cell pushing forces, which are consistent with high-order
myosin motor cooperativity. Collisions that impede forward motion induce
reversal, revealing navigation-related force sensing. Together, these data ident-
ify aspects of metabolism and motility that are likely to promote and underpin
diatom heterotrophy.
1. Introduction
Eukaryotes fall into fundamentally distinct groups based on their means of energy
acquisition. Photoautotrophs—land plants and algae—derive energy from sunlight.
By contrast, heterotrophs, such as animals and fungi, obtain energy by feeding on
primary producers or each other. Mixotrophs combine these two strategies.

Eukaryotic photoautotrophs evolved several times through endosymbiosis
between a heterotrophic eukaryote and a photosynthetic microbe. Such an
association between the ancestor of the Archaeplastida and a cyanobacterium
led to the emergence of land plants, green and red algae, and glaucophytes.
Afterwards, distinct algal lineages arose through secondary and tertiary endo-
symbiotic events, where the photosynthetic capacity was acquired from a
eukaryotic red or green alga [1–4].

The stramenopiles (also known as heterokonts) obtained their plastid through
a secondary or higher endosymbiotic event with a red alga [5]. This group
includes oomycetes, multicellular brown algae and unicellular diatoms [6].
With an estimated 100 000 species [7], diatoms are one of the most abundant
and diverse group of marine and freshwater microalgae [8–12]. Notably, they
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employ biomineralization to construct silica-based [13,14] cell
walls (frustules) that fit together like the two halves of a
petri dish. Diatoms possess either radial (centric diatoms) or
bilateral (pennate diatoms) symmetry. A group of pennate dia-
toms evolved a fine longitudinal slit through the frustule
known as the raphe. These raphid pennate diatoms can move
using a lineage-specific form of gliding motility [15,16] and
have undergone substantial evolutionary radiation to comprise
the most species-rich and diverse lineage of diatoms [9].

The raphe acts as a channel for the secretion of a complex
mixture of proteins and glycoproteins [17–21] known collec-
tively as extracellular polymeric substances (EPS). Motility
can be blocked by an antibody to EPS [17] and by actomyosin
inhibitors [22,23], suggesting that both systems play essential
roles. Actin filaments occur in two prominent bundles that
underlie the raphe just adjacent to the plasma membrane [24].
This arrangement supports a model of motility where myosin
motors exert pushing forces on the extracellular EPS through
a transmembrane protein [25]. However, this protein has yet
to be identified, and since actin is likely to be required for EPS
secretion [26,27], an alternative model where force is generated
from EPS polymerization has not been excluded [15,16].

Within each photosynthetic lineage, loss of photosynthesis
led to secondary heterotrophs,manyofwhich are parasites that
derive energy from their host [28]. Transitions to epizoic [29]
and free-living [30,31] heterotrophy are also well documented.
However, in most of these cases, the manner of energy acqui-
sition remains unclear. In the diatom genus Nitzschia, loss of
photosynthesis led to a group of free-living heterotrophs
[32,33]. These apochlorotic diatoms have been isolated from
the nutrient-rich waters of the intertidal zone where they
occur as epiphytes on seaweeds, on decaying plant matter
and in the surrounding waters [32,34–37]. As with many
photoautotrophs that transition to heterotrophy [30], they
have retained their plastid genomes and certain plastid-
localizedmetabolic functions, but have lost key photosynthetic
genes [38]. Early work showed that apochlorotic diatoms can
growon avariety of simple and complex carbohydrates includ-
ing cellulose and the red algal cell wall polysaccharides agarose
and carrageenan [34,35,39]. Recent genome sequence studies
have identified lignin-degrading enzymes in Nitzschia Nitz4
[40] and the expansion of secreted proteins and functions
related to organic carbon acquisition in Nitzschia putrida [41].
Thus, candidates for key heterotrophy-related functions are
beginning to emerge.

Here, we isolate new strains of apochlorotic diatoms from
Singapore’s intertidal zone. Live-cell imaging documents EPS
trail deposition and complex motility-related behaviours that
include high force generation (approx. 800 pN), cooperative
motility and collision-induced reversal. Variations in motility
and metabolism suggest that apochlorotic diatoms are under-
going substantial ecophysiological radiation. We propose that
these new isolates provide excellent models to study the
evolutionary transition to free-living heterotrophy.
2. Results
2.1. Isolation and characterization of apochlorotic

diatoms
Diatoms were cloned from organic materials collected from
the intertidal zone on Sentosa Island, Singapore (see Material
and methods). Five clones were initially isolated from decay-
ing plant matter, the brown alga Sargassum and the green alga
Bryopsis (figure 1a). Subsequent work revealed the ability of
these diatoms to metabolize the brown algal cell wall polysac-
charide alginate (figure 2a). Thus, we isolated an additional
seven clones from Sargassum. Phylogenetic analysis indicates
that these 12 isolates fall into three distinct clades (figure 1a).
Isolates were named Nitzschia singX–Y, where X designates
the clade number and Y the isolate number. Isolates in
clade 1 and 2 are sister taxa, with clade 2 having an affinity
for N. alba, while clade 3 is distantly related to clades 1 and 2.

Isolated diatoms grown on agarose seawater [42] media
form a radially expanding colony. Growth rates vary substan-
tially both within and between clades. Rates of colony
expansion for clade 1 and 2 diatoms vary between 100 and
300 nm s−1 (electronic supplementary material, figure S1a).
By contrast, all clade 3 diatoms and the recently sequenced
apochlorotic N. putrida [41] show very little colony expansion,
with cells dividing to form aggregates at the site of inoculation
(electronic supplementary material, figure S1b,c).

Clade 1 diatomswere isolated from green and brown algae,
and decaying plantmatter, suggesting that they occupy diverse
ecological niches. They are also among the fastest-growing
isolates. Thus, we chose N. sing1–1 as our model apochlorotic
diatom (hereafter referred to as N. sing1). F-actin staining
reveals characteristic bands underlying the raphe (figure 1b),
and scanning electron microscopy (SEM) of frustules identifies
eccentric raphes, hymenate pore occlusions and strongly
hooked distal raphe ends (electronic supplementary material,
figure S1d).
2.2. Growth on algal polysaccharides and catabolite
repression

We next examined the growth of N. sing1 on seawater media
solidified with red algal cell wall polymers agarose and carra-
geenan. As previously observed withN. alba [39], both of these
substrates could be used as the sole carbon source (electronic
supplementary material, figure S2). In addition, N. sing1
grows on the brown algal polysaccharide alginate. For each
polysaccharide substrate, the rate of radial colony expansion
generally has a concentration optimum and tends to decrease
with increasing concentration (electronic supplementary
material, figure S2). In the case of alginate, the medium under-
went liquefaction and browning, indicative of polysaccharide
hydrolysis (figure 2a). This is confirmed by a heat-sensitive
alginate lyase enzyme activity detected in the media of
N. sing1 grownwith alginate but not glucose (figure 2b). Repre-
sentatives of each clade of Singaporean diatoms liquefy
alginate, but N. putrida does not. This suggests that modes of
heterotrophy vary substantially within the apochlorotic line-
age. Neither agarose nor carrageenan undergo liquefaction.
However, on these media, the diatoms tunnel to grow inva-
sively (electronic supplementary material, figure S3), as has
been documented for N. albicostalis [35] and N. alba [39].

We next examined cellular extracts of diatoms grown on
seawater agar medium with and without 0.5% glucose. SDS-
PAGE reveals two N. sing1 proteins, p40 and p60, that are
abundant on agarose media, but substantially diminished
when glucose is present. This repression is observed for repre-
sentatives of each N. sing clade, but not N. putrida (figure 2c).
Alginate also promotes catabolite repression in N. sing1,
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Figure 1. Characterization of Singaporean apochlorotic diatoms. (a) Maximum-likelihood phylogeny of apochlorotic Nitzschia (shaded box) and Bacillariales photosyn-
thetic outgroup taxa. The Singaporean isolates are identified in magenta. The material from which they were isolated is indicated in green. Filled circles show simplified
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indicating that it is also a preferred carbon source (electronic
supplementary material, figure S4a). N. sing1 accumulates
large lipid droplets in the presence but not absence of glucose.
By contrast,N. putrida lipid droplets have a similar appearance
irrespective of glucose presence (figure 2d and electronic
supplementary material, figure S4b). This provides further
evidence for the metabolic responsiveness of N. sing1 to a
preferred carbon source.

2.3. Environmental control of EPS trails and motility
While measuringN. sing1 growth, we found that the EPS can be
seen as a refractive trail by bright-field microscopy (figure 3a).
This is probably due to swelling of the EPS to form a refractive
convex cross-sectional profile. EPS trails formed on 1% agarose
have a uniformwidth and appearance. By contrast, on 2% agar-
ose, where motility is substantially diminished, the trails take on
a broken appearance and the EPS forms refractive spherical
structures. To examine how the availability of seawater affects
motility, we overlayed the medium with seawater (figure 3b).
In this condition, a dramatic increase in the speed of motility is
observed as compared to plates without a seawater overlay
(figure 3c,d). Here, trails are not seen because the EPS is not at
the air interface. Together, these findings link nascent EPS swel-
ling and material properties with the promotion of motility.
Interestingly, diatoms are also observed gliding in a monolayer
at the seawater–air interface, indicating that N. sing1 motility is
not strictly dependent on substratum attachment (figure 3c).

2.4. Cooperative motility, force generation and force
sensing

Movies of EPS deposition allowed us to differentiate diatoms
laying fresh EPS trails from those moving on pre-existing
trails (figure 4a). We refer to these as trail blazers (blazers)
and trail runners (runners), respectively. Blazers instantly
accelerate upon joining a trail, while runners that leave a
trail instantly decelerate (figure 4b–e). These observations
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indicate that gliding motility is inherently more efficient
when occurring on an EPS trail. Because of this relationship,
runners tend to catch up to blazers and form chains of
cells, particularly at the colony’s expanding edge. When
fast-moving runners catch up to blazers, the blazer can
instantly accelerate (figure 4f,g). Thus, runners can exert
pushing forces to make blazers move faster.

Mathematical modelling shows that the movement of dia-
toms is well approximated by Brownian motion over large
space and time scales (electronic supplementary material).
A quasi-steady-state analysis of the model provides a
mathematical relationship between motion characteristics
and establishes that colony diffusivity increases with diatom
speed. This relationship is preserved in runner–blazer
groups, which exhibit an increase in speed compared with
lone blazers (figure 4f,g). Thus, modelling confirms the
tendency for cooperativemotility to increase colony diffusivity.

Broadside collisions between diatoms are readily observed
and these frequently lead to reversal of the impacting diatom.
In figure 5a, diatom 1 undergoes three successive impacts with
a relatively stationary diatom 2. The initial collision is followed
by a rapid reversal. However, the second and third collisions
are characterized by longer periods spent pushing. This is
coincident with increasing degrees of deflection of diatom 2
(figure 5a). Thus, the capacity for force generation appears to
be dynamic. Not all collisions lead to reversal. In some cases,
the impacting diatom slows dramatically upon collision and
continues to move forward as it pushes the other diatom out
of its path (figure 5b,c). Together, these observations reveal
the ability of moving N. sing1 diatoms to impart force, which
impacted diatoms resist through substratum adhesion.

We next employed a method that allows the measurement
of forces exerted by single diatoms. Here, a force-calibrated
glass micropipette is placed in the path of moving diatoms
and the force is estimated through the degree of pipette deflec-
tion [43,44]. These data reveal forces between approximately
100 and approximately 800 pN (figure 6a,b; electronic sup-
plementary material, figure S5). Lower force measurements
are associated with glancing contact with the pipette. By con-
trast, high force measurements occur within the context of
head-on contact and adhesion between the diatom and pipette.
Adhesion is evidenced by diatom detachment from the
agar surface at a load of approximately 740 pN (figure 6b,
no. 3) and an apparent EPS tether that attained a length of
3–4 µm before snapping at a load of approximately 800 pN
(figure 6b, no. 2). Diatoms pass underneath the pipette while
it undergoes deflection, suggesting that they are subject to
downward pushing forces of approximately 84 pN while
pushing/pulling on the pipette (based on an estimated
diatom height of 4 µm). Overall, these data show that
N. sing-1 is capable of producing surprisingly high forces.
For comparison, single intact muscle filaments produce forces
of approximately 200–300 pN [45,46].

Collision-associated reversals suggest thatN. sing1 diatoms
can sense force. However, reversals do not always follow col-
lisions (figure 5c,d) and also occur in free-running diatoms.
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To compare these two events, diatoms were grown on an agar
surface close to a coverslip embedded perpendicular to the
medium. Diatoms undergoing collisions with the coverslip
were then compared to nearby diatoms that did not experience
collision (figure 6c). In this experiment, 100% of colliding dia-
toms reverse within 400 s of being immobilized. By contrast,
13% of individuals whose motility is unimpeded reverse
within the same time interval (figure 6d). In these experiments,
colliding diatoms spend a longer period immobile prior to
reversal when compared with free-running reversals. Free-
running diatoms also slow prior to stopping and reversing,
suggesting underlying distinctions between free-running and
collision-induced reversals (electronic supplementarymaterial,
figure S6). Irrespective of this, these data show that collisions
that impede forward motion significantly increase the prob-
ability of reversal. This type of force sensing is likely to
increase colony diffusivity, especially where substrates possess
complex morphologies.
3. Material and methods
3.1. Diatom isolation
Organic materials were collected at low tide from the interti-
dal zone on Sentosa island, Singapore (latitude 1.259895,
longitude 103.810843; Singapore National Parks Board
permit no. NP/RP20-016). Samples were inoculated at the
centre of synthetic seawater [42], 2% (w/v) agar plates
supplemented with 100 µg ml−1 ampicillin (Sigma-Aldrich,
A9518) and 50 μg ml−1 kanamycin (Sigma-Aldrich, K4000).
After 2–3 days of incubation at 30°C, single diatoms gliding
away from the source inoculum were excised with a scalpel
and transferred to a fresh plate. To ensure that all isolates are
single-cell clones, the isolation process was repeated. Diatom
clones were cryopreserved according to the method of Stock
et al. [47]. The Sargassum species present at the collection site
were identified as a mixture of S. polycystum, S. cf. granuliferum
and S. ilicifolium (electronic supplementary material, figure S8)
through a maximum-likelihood (ML) analysis of ITS-2
alignment as previously described [48]. New sequences are
available in GenBank under accessions OQ165106 to
OQ165109. N. putrida (strain NIES-4239) was obtained from
The Microbial Culture Collection at the National Institute for
Environmental Studies 16–2, Onogawa, Tsukuba, Ibaraki
305–8506, Japan.
3.2. Diatom phylogenetic analysis
We sequenced one nuclear gene (28S d1–d2 rDNA) and two
mitochondrial genes (cob and nad1) for each of the Singapore
isolates following the PCR and sequencing protocols outlined
in Onyshchenko et al. [33]. Raw Sanger sequences were
edited and assembled with GENEIOUS v. 7.1.4 (Biomatters
Ltd.). New sequences are available in GenBank under
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Figure 6. Forces exerted by N. sing1 diatoms and mechanosensing. (a) The graph shows the maximum force produced by single diatoms pushing/pulling on the
pipette. (b) Images taken from the indicated movies show first contact (contact), an intermediate time point (intermediate), the point of maximum pipette deflec-
tion (maximum) and pipette recoil (recoil). The arrows in the merge panel show maximum force values. The pipette is overlayed in opaque magenta. Note that for
measurements 1 and 2 the diatom passes underneath the pipette. Scale bar = 10 µm. Related to electronic supplementary material, movies S9, S10 and S11. (c) The
schematic shows the experimental set-up for immobilization-triggered reversal. Only diatoms that hit the wall at an angle of more than 20° are included in the
dataset. (d ) The graph shows the percentage of cells reversing within 400 s (left y-axis). The scatterplot (right axis) shows the duration of time spent immobile prior
to reversal. The light grey bar identifies the mean. Standard deviation is indicated.
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accessions OQ319050-OQ319073 and OQ317929-OQ317940.
The protein-coding cob and nad1 genes were aligned by eye
in MESQUITE v. 3.6 [49] using the predicted amino acid trans-
lations as a guide to preserve codon structure. Partial 28S
rDNA genes were aligned using SSU-ALIGN ver. 0.1 [50]
with a heterokont-specific covariance model [51]. The three
alignments were concatenated with AMAS [52]. We used
IQ-TREE ver. 1.6.12 [53] for phylogenetic reconstruction.
The concatenated alignment was partitioned by gene and
codon position, and IQ-TREE’s partitioning and model selec-
tion procedure (-m TESTMERGE) was used to identify the
best fitting partition and nucleotide substitution model
[54,55]. The model used edge-proportional branch lengths
(IQTREE’s ‘-spp’ option) to account for differences in
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evolutionary rates among partitions. Branch support was
based on 1000 ultrafast bootstrap replicates [56].
oyalsocietypublishing.org/journal/rsob
Open

Biol.13:230148
3.3. Diatom growth, measurement, microscopy and
movies

Diatoms were cultured on a synthetic seawater medium [42]
with the following modification. NaCl was employed at a
final concentration of 180 mM, and for growth in liquid cultures
Na2SiO3 was employed at a final concentration of 840 µM.
For solid media, salt solutions I and II were prepared as 4×
stock solutions, while polysaccharides were prepared at 2× con-
centrations. Where necessary, polysaccharides were boiled and
equilibrated to 60°C beforemixingwith salt solutions I and II to
yield 1× final concentrations. Polysaccharides were obtained
from the following sources: Bacto agar (BD, 214010), agarose
(Vivantis, PC0701), carrageenan (Sigma-Aldrich, C1013),
low viscosity sodium alginate (Sigma-Aldrich, A1112) and
medium viscosity sodium alginate (Sigma-Aldrich, A2033).
For the alginate liquefaction assay (figure 2c), mediumviscosity
sodium alginate was employed.

Tomeasure the speed of radial colony expansion (electronic
supplementary material, figures S1a and S2), a starter culture
was prepared on a seawater agar petri dish. From these conflu-
ent plates, a small block (approx. 0.5 × 0.5 cm) was excised with
a scalpel and used to inoculate fresh plates from which
measurements were derived. After overnight growth at 30°C,
the edge of the radially expanding colony was marked. A
subsequent measurement was made after 24 h. These
marks were used to calculate speed, in nm s−1. Each speed
measurement was done in triplicate.

For movies, diatoms were grown on seawater agar medium
in petri dishes. Movies were made using an Olympus BX51
uprightmicroscope equippedwith a 5×objective using a Photo-
metrics CoolSNAP HQ (Teledyne Photometrics) camera
controlled by MetaVue software (Molecular Devices). Frames
were acquired every 30 s at an exposure time of 20 ms with
bright-field illumination. For movies shown in figure 3c,
frames were acquired every 5 s. Graphs of diatom speed were
made by manually measuring frame-to-frame diatom move-
ment in ImageJ (https://imagej.nih.gov/ij/index.html). For
the quantification shown in figure 4d,e, the average increase
or decrease in speed was calculated from the average speed
over six frames before and after joining the trail.

To examine total cell proteins (figure 2c and electronic sup-
plementary material, figure S4a) by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE), plates on
which diatoms had been grown to confluence were flooded
with 7.5 ml phosphate-buffered saline + (PBS+) (10 mM
Na2HPO4, 1.8 mM KH2PO4, 240 mM NaCl), and cells were
scraped off gently using a cell scraper (Corning Incorporated
Costar, 3010). The cells were pelleted by centrifugation at 3.9
k × g for 10 min and washed once with 7 ml of PBS+ before
being lysed by boiling in SDS-PAGE loading buffer. Proteins
were resolved using 10% polyacrylamide gels.

For staining with phalloidin (ThermoFisher, A12379)
(figure 1b), a block of seawater agar medium from a confluent
plate was transferred to the centre of a coverslip. The coverslip
was placed in a 60 mmpetri dish, overlayedwith 6 ml of liquid
synthetic seawater medium (0.5% (w/v) glucose), and incu-
bated at 30°C for 24 h. The agar block was subsequently
removed, and the coverslip placed cells-up on a piece of
parafilm in a 90 mm petri dish. The cells were washed once
with PBS+ and then fixed in PBS containing 4% paraformalde-
hyde (ElectronMicroscopy Sciences, 15713) for 30 min at room
temperature. Samples werewashed three times with PBS+ and
then incubated with 0.17 µM phalloidin 488 (stock: 66 µM in
dimethyl sulfoxide (DMSO)) in PBS+ for 1 h in the dark.
Samples were washed with PBS+ (3 × fast wash + 3 × 10 min
wash) at room temperature. After the last wash, 5 µl mounting
medium (PBS, 20% glycerol, 2 µg ml−1 DAPI, 1× antifade),
(100× antifade stock: 20% (w/v) n-propyl gallate (Sigma-
Aldrich, P3130) in DMSO) was added and the coverslip was
placed on a microscope slide cells down and sealed with paraf-
ilm. For staining of lipid droplets with BODIPY, diatoms were
grown on seawater agar media. After 2 days growth at 30°C, a
block (approx. 1 cm× 1 cm) was excised with a scalpel and
transferred cells-up onto a microscope slide. The diatoms
were overlayed with 4 µl of a solution containing 30 µg ml−1

BODIPY 505/515 (Invitrogen, D3921) in PBS+. After approxi-
mately 30 min a coverslip was added and the diatoms were
imaged by fluorescence microscopy. The diatom frustules
were prepared for SEM as previously described [57].

3.4. Force measurement
To measure the force produced by diatom movement
(figure 6a,b), a small block, approximately 0.25 × 0.5 cm, was
excised from a starter culture and used to inoculate 1.5% agar-
ose seawater medium contained by a u-shaped thin-wall
chamber made of polydimethylsiloxane (DOW, 4019862) on
top of a coverslip [43]. After incubation at room temperature
for 1 day, the chamber was floodedwith seawater (Electrostatic
attraction between the pipette and medium necessitated that
these experiments be conducted with a seawater overlay as in
figure 3b). The chamber was then placed on a microscope
stage with a slide holder and a micropipette, prepared as
described below, was inserted through the open side of
the chamber and positioned in front of a diatom using an
MP-285 motorized micromanipulator (Sutter Instruments).
Movies were made using an Olympus IX81 equipped with a
40× objectivemanipulatedwithMetaMorph software (Molecu-
lar Devices), with frames acquired every 0.5 s. Frame-to-frame
micropipette and diatom movement were manually measured
using ImageJ and used to produce force/velocity graphs
(electronic supplementary material, figure S5).

Micropipette production: briefly, thin-wall glass capillaries
(1 mm outer diameter, 0.78 mm inner diameter; World Pre-
cision Instruments, TW100F-6) were pulled using a P-97
micropipette puller (Sutter Instruments) and the tip was cut
to the desired inner diameter of approximately 2 µm with an
in-house developed heated platinum wire. The stiffness of the
micropipette was calibrated using a standard micro glass rod
(ks= 21.09 ± 4.22 pN µm). The preparation of a standard micro
glass rod and calibration of theworkingmicropipettewere con-
ducted as previously described [43]. Before use, the tip of the
micropipette was incubated overnight with 3% fetal bovine
serum (Sigma-Aldrich, A7030).

3.5. Alginate lyase enzyme activity assay
Diatoms were grown in liquid medium for 3 days at 30°C,
after which cells were removed using a cell strainer (SPL
Life Sciences, 93040). The medium was then centrifuged at
3.9 k × g for 15 min and concentrated using a Pierce protein

https://imagej.nih.gov/ij/index.html
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concentrator with a 3 kilodalton cut-off (ThermoFisher, 88526).
The concentrated mediumwas diluted 1 : 5 with synthetic sea-
water medium before use. For heat-inactivated controls, the
diluted culture media was heated at 100°C for 5 min and
then briefly centrifuged. To perform the enzyme assay, 5 µl of
diluted sample was added to 45 µl sodium alginate buffer
(10 mM Tris (pH 7.4), 200 mM NaCl, 200 mM KCl, 2 mM
CaCl2, 0.01% sodium azide and 0.1% low-viscosity sodium
alginate (Sigma-Aldrich, A1112)) in a 384-well UV-STAR
microplate (Greiner Bio-One International). Alginate lyase
activity was determined by measuring the increase in absor-
bance at 235 nm at 1-min intervals using a Tecan Spark
Multimode Microplate Reader (Tecan Inc.).
Open
Biol.13:230148
4. Discussion
The apochlorotic diatoms described here were isolated from a
variety of organic materials (figure 1a) and can grow on a
broad range of algal polysaccharides (figure 2a; electronic sup-
plementary material, figure S2). Evidence for catabolite
repressionmediated by the presence of preferred carbon sources
(figure 2c; electronic supplementary material, figure S4a) ident-
ifies an aspect of metabolism classically associated with
heterotrophy in fungi [58] and bacteria [59]. Overall, these find-
ings are consistent with a general role for apochlorotic diatoms
in coastal marine nutrient cycling—one akin to the role of osmo-
trophic fungi [60] in terrestrial environments. Interestingly,
unlike thediatoms identifiedhere,N. putridadoes notmetabolize
alginate nor show evidence of catabolite repression (figure 2a,c).
A high degree of ecophysiological variation is further evidenced
by poor motility of clade 3 isolates and N. putrida as compared
to clade 1 and 2 isolates (electronic supplementary material,
figure S1a–c). Together, these findings suggest that apochlorotic
diatoms exploit distinct feeding strategies and are undergoing
substantial evolutionary radiation.

A series of evolutionary innovations culminating in force
generation frommotility are likely to have predisposed the dia-
toms to a successful transition to heterotrophy. These include
the advent of the silica-based cell wall, bilateral symmetry,
the raphe and forceful motility. Certain marine bacteria are
highly evolved for alginatemetabolism [61,62], but are unlikely
to generate forces necessary for tunnelling [63]. Thus, high
forces from diatom gliding motility (figure 6a,b) are likely to
underlie invasive growth (electronic supplementary material,
figure S3) and allow access to nutrient pools unavailable to
competing microorganisms. This is consistent with N. alba
invasive growth on brown algal tissues [39] and tunnelling
in both N. alba and N. albicostalis, which appears to be stimu-
lated by the presence of bacteria [35,39]. In terrestrial
environments, the fungi have a similar advantage where the
force from pressurized hyphal networks underlies invasive
growth [64]. Thus, distinct manners of force generation
appear to provide an advantage to eukaryotic heterotrophs
over their bacterial counterparts.

Diatom EPS trails have been visualized and characterized
by electron microscopy [65], atomic force microscopy [66,67]
and various staining techniques [15,17,19,68]. The direct
observation of EPS deposition by living cells provides the
opportunity to investigate the relationship between EPS
trails and motility. On agarose concentrations that favour
motility, uniform refractive EPS trails are presumably visible
due to their convex cross-sectional profile. With increasing
agarose concentration, motility slows substantially and EPS
trails lose their uniform cross-sectional profile to form aber-
rant refractive puncta (figure 3a). This suggests that freshly
secreted EPS undergoes rapid swelling that is sensitive to
timely hydration and/or the availability of critical seawater
ionic constituents. A critical role for hydration is also consist-
ent with dramatically enhanced motility when agar plates are
overlayed with seawater (figure 3b–d ). Faster motility on pre-
existing trails and increased motility with a seawater overlay
have also been observed in Phaeodactylum tricornutum [69].
Thus, these aspects of motility are likely to be general features
of raphid pennate diatoms. The sea surface microlayer (SSM)
is known to have a distinct physical, chemical and biological
composition [70]. The finding that gliding occurs in a mono-
layer at the SSM (figure 3c) suggests that the EPS has an
affinity for the seawater surface underside. This provides a
physical basis for previous work showing that apochlorotic
diatoms are enriched at the SSM [36].

The relationship between runners and blazers leads to
cooperative motility (figure 4) and is likely to be related to
the dual function of EPS in adhesion and motility. Runners
that go off-trail instantly decelerate. This is consistent with
more nascent EPS being consumed by the adhesive function.
By contrast, blazers joining a trail instantly accelerate
(figure 4b–d) because adhesive contacts are already present,
and only EPS–EPS contacts are required. Interestingly, line
scans of trails do not change dramatically between a fresh
trail and one that has been passed over by runner diatoms
(electronic supplementary material, figure S7). Thus, runners
may be secreting substantially less EPS than blazers. This
could also factor into their tendency to move at higher speeds.

Our force measurements are consistent with force gener-
ation through myosin motors; however, they do not exclude
a role for EPS polymerization. Single myosin molecules
exert forces of 3–4 pN [71], while isolated muscle filaments
can generate maximum forces of approximately 200–300 pN
[45,46]. Thus, N. sing1 peak forces of 700–800 pN (figure 6a,
b) are consistent with the cooperative action of multiple
myosin motors arrayed along the length of raphe-associated
actin filaments. Force measurements were made with single
diatoms and are likely to be higher in runner/blazer chains.
Thus, cooperative motility is expected to increase both
colony diffusivity (electronic supplementary material) and
the ability to tunnel effectively.

A related set of equations describes colony diffusivity ofN.
sing1 (electronic supplementary material) and the mixotrophic
diatom Navicula [72]. Thus, periodic reversal combined with
random turning is likely to be a general strategy used by
raphid pennate diatoms to avoid immobilization after encoun-
tering an obstacle. By sensing immobilization (figure 6c),
N. sing1 is able to reduce the period of immobility, while
presumably maintaining an independent frequency of free-
running reversal. Distinct mechanisms could underlie N.
sing1 force sensing. For example, mechanosensitive ion chan-
nels are established force sensors that could trigger a
signalling cascade leading to reversal. In another model,
strain on the force-generation machinery could trigger reversal
through a feedback mechanism. More work will be required to
determine the mechanism of force sensing.

The transition from photoautotrophy to obligate heterotro-
phy is likely to have been accompanied by a variety of
physiological adaptations. However, because many pennate
diatoms are highly evolved mixotrophs [73–76], it remains
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unclear whether alginate utilization, cooperative motility and
force sensing are unique to apochlorotic diatoms or pre-date
their emergence. Identifying the genetic basis for diatom obli-
gate heterotrophy will require an integrated approach that
combines comparative genomics with molecular, biochemical,
cellular and physiological studies.
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