

School of Biological Sciences

SBS Semínar Announcement

Designed DNA Nano-Switches for Molecular Sensing

Prof Yu Hua-Zhong (Hogan)

Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada

Abstract

Functional nucleic acid receptors (aptamers) have emerged as effective and robust recognition elements for use in molecular biosensors. Analytical readouts from aptamer-based biosensors (whether optical, electrochemical, or otherwise) derive primarily from global-scale conformational changes induced in the aptamer domain by analyte binding. For certain classes of biosensors that offer electrochemical readout, analyte-induced conformational change in an electrode-bound aptamer alters the distance between the electrode surface and a redox label appended to the aptamer; as a result, the rate of electron transfer between the electrode and redox label is responsive to analyte binding. Herein, we describe a unique biosensor design principle that represents a distinct alternative to this paradigm. We demonstrate the ready applicability of this design principle in the *de novo* creation of electrochemical sensors for a clinical analyte of current interest. The function of the class of biosensors we describe, termed "DNA nano-switches", is designed to depend on the integrity of duplex DNA-mediated charge transfer between an electrode and a redox label.

Wednesday, 21 Aug 2013 3.30pm to 4.30pm SBS Classroom 7 (SBS-B1n-17)

Host: Associate Professor Mu Yuguang