

School of Biological Sciences

SBS Semínar Announcement

Next-Gen virology: Use of microfluidics and live-cell imaging to study poliovirus replication at the single-cell level

Prof. Craig E. Cameron Professor and Eberly Chair Department of Biochemistry and Molecular Biology The Pennsylvania State University

Abstract

For nearly two decades my laboratory has focused on the viral RNA-dependent RNA polymerase (RdRp) as a target for development of antiviral therapeutics with broad-spectrum efficacy and for development of an enzyme mechanism-based strategy for viral attenuation and vaccine development using poliovirus (PV) as our primary model system. Our earliest studies pointed to nucleotide incorporation fidelity of the RdRp as a target for drug and vaccine development. Using a combination of biochemical, biophysical and computational approaches, we have developed a model for nucleotide selection by the RdRp that involves toggling of the nucleotide-binding site between nucleotide binding-occluded and nucleotide binding-competent states. A mutation that favors the binding-competent state creates a mutator polymerase and an attenuated virus capable of eliciting a protective immune response in a small-animal model. Using the plaque-forming unit (pfu) to quantify virus and the one-step growth experiment as a measure of viral fitness, the mutator virus did not exhibit a phenotype when compared to wildtype virus in cell culture. One reason for this observation was that pfu is, itself, a phenotype, with the number of genomes per pfu varying between viruses thereby masking phenotypes. Another reason for this observation was that at a high multiplicity of infection, the conditions used for the one-step growth experiment, complementation occurs, thereby suppressing growth phenotypes. Collectively, these observations highlighted the need for a platform to study single virions infecting single cells to mimic the circumstance encountered by a virus in vivo. We will present the current fruits of our labor using a nano-well, valve-based, on-chip microfluidic device to monitor single, virus-infected cells. This approach reveals phenotypes in vitro masked by conventional methods, as well as a remarkable level of between-cell variability. We will discuss the implications of our findings on the design and execution of virology experiments in the future.

Thursday, 16 Oct 2014 2.00pm to 3.00pm SBS Classroom 2 (SBS-01n-22)

Host: A/Prof Yoon H.S.